Community Structure in Large Complex Networks
نویسندگان
چکیده
In this paper, we establish the definition of community fundamentally different from what was commonly accepted in previous studies, where communities were typically assumed to be densely connected internally but sparsely connected to the rest of the network. A community should be considered as a densely connected subset in which the probability of an edge between two randomly-picked vertices is higher than average. Moreover, a community should also be well connected to the remaining network, that is, the number of edges connecting a community to the rest of the graph should be significant. In order to identify a well-defined community, we provide rigorous definitions of two relevant terms: “whiskers” and the “core”. Whiskers correspond to subsets of vertices that are barely connected to the rest of the network, while the core exclusively contains the type of community we are interested in. We have proven that detecting whiskers, or equivalently, extracting the core, is an NP-complete problem for weighted graphs. Then, three heuristic algorithms are proposed for finding an approximate core and are evaluated for their performance on large networks, which reveals the common existence of the core structure in both random and real-world graphs. Further, well-defined communities can be extracted from the core using a number of techniques, and the experimental results not only justify our intuitive notion of community, but also demonstrate the existence of large-scale communities in various complex networks.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملOverview of Algorithms for Detecting Community Structure in Complex Networks
Community structure is a very important property of complex networks. Detecting communities in networks is of great importance in biology, computer science, sociology and so on. In recent years, a lot of community discovery algorithms have been proposed aiming at different kinds of large scale complex networks. In this paper, we review some latest representative algorithms, focusing on the impr...
متن کاملHierarchical Problems for Community Detection in Complex Networks
An objective method for extracting network community structure is an extremely useful tool for understanding the large complex networks found in the social and biological sciences. One such method, which relies on the maximization of the modularity quality function Q, has received a great deal of attention and is now widely used. We find that, for networks with a hierarchical modular structure,...
متن کاملOnline Community Detection for Large Complex Networks
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010